Discovery of Atg5/Atg7-independent alternative macroautophagy

Yuya Nishida¹,²*, Satoko Arakawa¹*, Kenji Fujitani¹, Hirofumi Yamaguchi¹, Takeshi Mizuta¹, Toku Kanaseki¹, Masaaki Komatsu³, Kinya Otsu⁴, Yoshhide Tsujimoto⁵ & Shigeomi Shimizu¹

Macropautpahy is a process that leads to the bulk degradation of subcellular constituents by producing autophagosomes/autolysosomes. It is believed that Atg5 (ref. 4) and Atg7 (ref. 5) are essential genes for mammalian macropautpahy. Here we show, however, that mouse cells lacking Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stressors. Although lipitation of the microtubule-associated protein light chain 3 (LC3, also known as Map1lc3a) to form LC3-II is generally considered to be a good indicator of macropautpahy, it did not occur during the Atg5/Atg7-independent alternative process of macropautpahy. We also found that this alternative process of macropautpahy was regulated by several autophagic proteins, including Unc-51-like kinase 1 (ULK1) and beclin 1. Unlike conventional macropautpahy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of isolation membranes with vesicles derived from the trans-Golgi and late endosomes. In vivo, Atg5-independent alternative macropautpahy was detected in several embryonic tissues. It also had a function in clearing mitochondria during erythroid maturation. These results indicate that mammalian macropautpahy can occur through at least two different pathways: an Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.

The biological functions of macropautpahy have been examined by generating mice lacking several Atg genes, including Atg5 (ref. 4), beclin 1 (Becn1)⁶,⁷ and Atg7 (ref. 5), considered essential for macroautophagy; constitutive and starvation-induced autophagy is impaired in such mice. However, because Atg5⁻/⁻ or Atg7⁻/⁻ mice remain healthy until the perinatal period⁸,⁹, an alternative mechanism of bulk protein degradation may compensate for the lack of Atg5/Atg7-dependent macropautpahy.

To investigate possible alternative protein degradation mechanisms in Atg5⁻/⁻ mice, we obtained embryonic fibroblasts from Atg5 knockout mouse (Atg5⁻/⁻ MEFs) and their control littermates (wild-type (WT) MEFs) (Supplementary Fig. 2a). Treatment with rapamycin induced macropautpahy in WT MEFs but not in Atg5⁻/⁻ MEFs (Supplementary Fig. 2b), as reported previously⁷. We investigated autophagy induced by cytotoxic stressors (such as etoposide). After exposure to etoposide, each cell detached and underwent apoptosis in the same proportion (Supplementary Fig. 3). To exclude apoptotic consequences, only attached MEFs were examined. Etoposide resulted in the formation of numerous autophagic vacuoles in WT MEFs (Supplementary Fig. 2c) and an equivalent size and number of autophagic vacuoles also appeared in Atg5⁻/⁻ MEFs (Fig. 1a (electron microscopy, EM), b and Supplementary Fig. 2c). The autophagic area in each cell increased equivalently over time during exposure to etoposide in WT and Atg5⁻/⁻ MEFs (Fig. 1c). Typical autophagic structures, including double-membrane structures, autophagosomes, amphisomes and autolysosomes, were observed in etoposide-treated Atg5⁻/⁻ MEFs (Fig. 1d and Supplementary Fig. 4a). The presence of multilamellar bodies in autolysosomes indicated autophagic degradation of subcellular constituents (Fig. 1d). These autolysosomal structures were merged with the immunofluorescence dots of Lamp2, a lysosomal protein (Fig. 1a and Supplementary Fig. 5). There were numerous double-membrane structures and few autolysosomes in Atg5⁻/⁻ MEFs after treatment with etoposide for 12 h; the situation was reversed at 18 h (Supplementary Fig. 4b), indicating that the autophagic process progressed over time after exposure to etoposide. Similar structures were observed when cells were examined by electron microscopy after quick freezing and freeze-substitution, a technique that achieves superior preservation of cellular architecture (Fig. 1e and Supplementary Fig. 4a). Similar results were observed when apoptosis was inhibited by the pan-caspase inhibitor zVAD-fmk (see later). Furthermore, similar macropautpahy was observed in etoposide-treated Atg5⁻/⁻ MEFs from a different Atg5⁻/⁻ mouse (Supplementary Fig. 6a, b) and in staurosporine-treated Atg5⁻/⁻ MEFs and Atg5⁻/⁻ thymocytes (Supplementary Fig. 6c, d). This suggests that cells possess the Atg5-independent macropautpahy system, designated 'alternative macropautpahy'.

To confirm the induction of alternative macropautpahy in etoposide-treated Atg5⁻/⁻ MEFs, we examined the effect of bafilomycin A1, which prevents the fusion of autophagosomes with lysosomes¹⁰. Exposure to bafilomycin A1 was expected to increase and decrease the number of autophagosomes and autolysosomes, respectively. We obtained the expected results in WT MEFs and Atg5⁻/⁻ MEFs, supporting the notion of Atg5-independent induction of macropautpahy (Fig. 1f and Supplementary Fig. 7a). Moreover, 3-methyladenine, a phosphatidylinositol-3-OH kinase (PI(3)K) inhibitor that blocks Atg5-dependent autophagosome formation¹¹, significantly suppressed autophagosome formation in etoposide-treated Atg5⁻/⁻ MEFs (Fig. 1g and Supplementary Fig. 7b), suggesting the involvement of PI(3)K in Atg5-independent macropautpahy.

We next assessed whether and to what extent protein degradation occurs in etoposide-treated Atg5⁻/⁻ MEFs. Etoposide induced protein degradation and had a similar effect on WT and Atg5⁻/⁻ MEFs (Fig. 1h), which is consistent with the morphological analysis (Fig. 1c). Suppression of protein degradation by bafilomycin A1 and a lysosomal protease inhibitor cocktail suggested the involvement of lysosomal proteases (Fig. 1i). Although lysosomal proteases are also involved in macropautpahy-independent proteolysis, including chaperone-mediated autophagy, alternative macropautpahy may possibly have functioned in etoposide-induced proteolysis, because protein degradation was suppressed by 3-methyladenine (Fig. 1i).

¹Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. ²Department of Medical Genetics, ³Department of Cardiovascular Medicine, Osaka University Medical School, 2-2 Yamadaoka,Suita, Osaka 565-0871, Japan. ⁴Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan.

*These authors contributed equally to this work.

©2009 Macmillan Publishers Limited. All rights reserved
which blocked macroautophagy (Fig. 1g) but not chaperone-mediated autophagy\(^a\). zVAD-fmk was used in these experiments to avoid the influence of apoptosis-related proteolysis; its addition did not influence etoposide-induced macroautophagy (Supplementary Fig. 8).

We investigated starvation-induced Atg5-independent macroautophagy. Although a lack of autophagosomes in Atg5\(^{−/−}\) cells has been reported for embryonic stem cells\(^3\), we found mature autophagosomes in both macroautophagy types were activated in WT MEFs and confirmed by quantitative PCR with reverse transcription (qRT–PCR) (Fig. 1d, EM). Mammalian macroautophagy can therefore occur through two pathways—Atg5-dependent and Atg5-independent alternative pathways—possibly activated by different stimuli.

We examined whether autophagic modification of LC3 occurs during starvation and confirmed that starvation-induced proteolysis was also mediated by alternative macroautophagy in Atg5\(^{−/−}\) MEFs. Mammalian macroautophagy can therefore occur through two pathways—Atg5-dependent and Atg5-independent alternative pathways—possibly activated by different stimuli.

Figure 1: Induction of macroautophagy in Atg5\(^{−/−}\) MEFs by etoposide and starvation. a, Etoposide-treated Atg5\(^{−/−}\) MEFs were assessed by EM (left) and by Lamp2 immunofluorescence (IF; middle). Right: reverse Lamp2 immunofluorescence image merged with the electron microscopy image. Arrows indicate Lamp2-positive autolysosomes. Magnified photos are provided in Supplementary Fig. 5. b, The size of each autophagic vacuole (AV) (n = 30 cells) in MEFs treated with etoposide. The total number of AVs in 30 cells was 483 in WT cells and 494 in Atg5\(^{−/−}\) cells. c, Percentage autophagic area (n = 20 cells) in MEFs treated with etoposide. d, e, Representative macroautophagy in etoposide-treated Atg5\(^{−/−}\) MEFs. Conventional (d) and quick freezing and freeze-substitution (e) techniques were used. The autolysosomes (arrows) contain multilamellar bodies (arrowheads). f, The number of autophagosomes (white columns) and autolysosomes (black columns) in MEFs (n = 10 cells) treated with etoposide. g, Reduction of percentage autophagic area by 3-methyladenine (3-MA; n = 22 cells). h, Time-course analysis of long-lived protein degradation (n = 4). i, Inhibition of long-lived protein degradation by bafilomycin A1, protease inhibitor cocktail (PIC) and 3-MA (\(P < 0.05\); n = 4). j, k, Similar experiments to those in e and f were performed by starvation. Red and blue lines in b, c, g and j indicate means and s.e.m., respectively. The dashed line in e, g and j indicates the autophagic cell border (6%). Black error bars indicate s.d.

(Supplementary Fig. 10). WT and Atg5\(^{−/−}\) MEFs showed similar macroautophagy levels after exposure to etoposide (Fig. 1c), even though both macroautophagy types were activated in WT MEFs (Supplementary Fig. 11) and only the alternative form was activated in Atg5\(^{−/−}\) MEFs; however, this may have resulted from the mutual regulation between conventional and alternative macroautophagy.

Immunostaining was performed for Lamp2 to assess the extent of alternative macroautophagy in etoposide-treated Atg5\(^{−/−}\) MEFs, because the fluorescence pattern changed from diffuse to punctate during autolysosome generation (Fig. 2e). The following evidence supports the validity of this assay: first, the Lamp2 fluorescent dots coincided with autolysosomes (Fig. 1a); second, the number of Atg5\(^{−/−}\) MEFs with fluorescent dots matched that of autophagic cells assessed by electron microscopy (Supplementary Fig. 12a); and third, bafilomycin A1 decreased the number of cells with dots (Supplementary Fig. 12b). We searched for molecules involved in alternative macroautophagy by using the Lamp2 immunostaining assay. Because many DNA damage-induced events are under transcriptional regulation, we compared the gene expression profiles of healthy and etoposide-treated Atg5\(^{−/−}\) MEFs. The autophagic molecule Ulk1 (ref. 17) was upregulated in etoposide-treated Atg5\(^{−/−}\) MEFs (Fig. 2f) and confirmed by quantitative PCR with reverse transcription (qRT–PCR) (Fig. 2g) and western blotting (Fig. 2h). Furthermore, silencing both Ulk1 and Fip200 (also known as Rb1cc1)—a component of the Ulk1 kinase complex\(^a\)—decreased the number of autophagic cells (Fig. 2i, j and Supplementary Fig. 13), indicating that the Ulk1 complex is important in alternative macroautophagy.

Because Ulk1 is involved in alternative macroautophagy, some conventional autophagy-related molecules might function in the alternative process. Conventional macroautophagy machinery includes the Ulk1 complex\(^a\), the PI(3)K complex, the Atg9 systems...
and two Atg7-mediated ubiquitin-like protein systems (Atg8 and Atg12 is conjugated with phosphatidylethanolamine and Atg5, respectively, and Atg16 interacts with Atg5)\(^2\). When Atg7\(^{-/-}\) MEFs were treated with etoposide, macroautophagy was induced without generating LC3-II (Supplementary Fig. 14). Moreover, silencing of Atg7, Atg12 or Atg16 did not suppress alternative macroautophagy in Atg5\(^{-/-}\) MEFs (Supplementary Fig. 15). Together with the data on Atg5 and Atg8 homologues, these experiments indicated that the ubiquitin-like protein systems are not required for alternative macroautophagy. In addition, silencing of Atg9 did not show any influence (Supplementary Fig. 15). Ulk1, Fip200, beclin 1 and Vps34 (but not Atg7, Atg12, Atg5 and Atg8 homologues, these experiments indicated that the PI(3)K complex (Fig. 1g, i). Ulk1, Fip200, beclin 1-silenced MEFs were transfected with the siRNAs related to the Ulk1 complex (i, l) and the PI(3)K complex (k, l) and a beclin 1 plasmid (k) for 24 h and treated with etoposide for 18 h. Induction of macroautophagy was assessed by Lamp2 IF (i, k) and by EM (j, l). In i and k, *P < 0.05 (n = 4); in j and l, *P < 0.01 (n = 35 cells each). hBeclin 1, human beclin 1. Red and blue lines in j and l indicates and the autophagic cell border. Black error bars indicate s.d. (n = 4). Original magnification (b, e), × 200.

but not conventional macroautophagy (Supplementary Fig. 18). We therefore examined the involvement of the trans-Golgi or endosomes in the extension and closure of isolation membranes. First, we introduced genes encoding GFP-tagged organelle marker proteins into Atg5\(^{-/-}\) MEFs and analysed the co-localization with Lamp2-positive vacuoles. Etoposide induced the redistribution of a fraction of mannos6-phosphate receptors (a marker for the trans-Golgi and late endosomes\(^{23}\)) in the Golgi apparatus (Fig. 1g, i). Ulk1, Fip200, beclin 1-silenced MEFs were transfected with the siRNAs related to the Ulk1 complex (i, l) and the PI(3)K complex (k, l) and a beclin 1 plasmid (k) for 24 h and treated with etoposide for 18 h. Induction of macroautophagy was assessed by Lamp2 IF (i, k) and by EM (j, l). In i and k, *P < 0.05 (n = 4); in j and l, *P < 0.01 (n = 35 cells each). hBeclin 1, human beclin 1. Red and blue lines in j and l indicates and the autophagic cell border. Black error bars indicate s.d. (n = 4). Original magnification (b, e), × 200.

but not conventional macroautophagy (Supplementary Fig. 18). We therefore examined the involvement of the trans-Golgi or endosomes in the extension and closure of isolation membranes. First, we introduced genes encoding GFP-tagged organelle marker proteins into Atg5\(^{-/-}\) MEFs and analysed the co-localization with Lamp2-positive vacuoles. Etoposide induced the redistribution of a fraction of mannos6-phosphate receptors (a marker for the trans-Golgi and late endosomes\(^{23}\)) in the Golgi apparatus (Fig. 1g, i). Ulk1, Fip200, beclin 1-silenced MEFs were transfected with the siRNAs related to the Ulk1 complex (i, l) and the PI(3)K complex (k, l) and a beclin 1 plasmid (k) for 24 h and treated with etoposide for 18 h. Induction of macroautophagy was assessed by Lamp2 IF (i, k) and by EM (j, l). In i and k, *P < 0.05 (n = 4); in j and l, *P < 0.01 (n = 35 cells each). hBeclin 1, human beclin 1. Red and blue lines in j and l indicates and the autophagic cell border. Black error bars indicate s.d. (n = 4). Original magnification (b, e), × 200.

but not conventional macroautophagy (Supplementary Fig. 18). We therefore examined the involvement of the trans-Golgi or endosomes in the extension and closure of isolation membranes. First, we introduced genes encoding GFP-tagged organelle marker proteins into Atg5\(^{-/-}\) MEFs and analysed the co-localization with Lamp2-positive vacuoles. Etoposide induced the redistribution of a fraction of mannos6-phosphate receptors (a marker for the trans-Golgi and late endosomes\(^{23}\)) in the Golgi apparatus (Fig. 1g, i). Ulk1, Fip200, beclin 1-silenced MEFs were transfected with the siRNAs related to the Ulk1 complex (i, l) and the PI(3)K complex (k, l) and a beclin 1 plasmid (k) for 24 h and treated with etoposide for 18 h. Induction of macroautophagy was assessed by Lamp2 IF (i, k) and by EM (j, l). In i and k, *P < 0.05 (n = 4); in j and l, *P < 0.01 (n = 35 cells each). hBeclin 1, human beclin 1. Red and blue lines in j and l indicates and the autophagic cell border. Black error bars indicate s.d. (n = 4). Original magnification (b, e), × 200.
Figure 3 | Involvement of Rab9 in alternative autophagosome generation. a–d, Electron micrographs of etoposide-treated Atg5−/− MEFs. a, AVs were observed near the Golgi apparatus (G). Inset, the isolation membrane (I) was extended from the Golgi stack. b, Developing autophagosomes. c, d, Isolation membrane fusing with vesicles containing thick membrane (d) and a complete autophagosome (e) is generated. e, f, Co-localization of Lamp2 with GFP–M6PR, GFP–Stx7 or GFP–Rab9 in etoposide-treated Atg5−/− MEFs. Arrows indicate co-localized isolation membranes was not observed with Ulk1 silencing (Supplementary Fig. 13d) or beclin 1 silencing (Supplementary Fig. 16d). Rab9 silencing had no influence on conventional macroautophagy (Fig. 3j), indicating that Rab9 is required for alternative but not conventional macroautophagy.

Finally, we examined alternative macroautophagy in Atg5−/− embryos to understand its physiological relevance. In Atg5−/− fetal brains (Fig. 4a), livers (Fig. 4b–d) and hearts (Fig. 4e), we detected autophagic vacuoles at the same level as in WT fetal tissues (data not shown). We then investigated alternative macroautophagy during erythrocyte maturation. Erythrocytes undergo organelle clearance during terminal differentiation, and macroautophagy may function in this process21,22. In fact, ultrastructural analysis of the WT fetal liver (embryonic day (E)14.5), where haematopoiesis occurs, showed that autophagic vacuoles in reticulocytes engulfed and digested mitochondria (Fig. 4f). We observed a few more autophagic vacuoles in Atg5−/− reticulocytes (Fig. 4g–i). Examination of the circulating erythrocytes showed that although the number of autophagic vacuoles was decreased, a few mitochondria were still engulfed and digested in the vacuoles in both mice groups (Fig. 4k–n). Moreover, the number of persisting mitochondria in Atg5−/− reticulocytes and erythrocytes was the same as in WT cells of each type (Fig. 4j, o).

Figure 4 | Physiological roles of alternative macroautophagy. a–e, Typical autophagic structures in the tissues of an Atg5−/− embryo (E14.5); a, midbrain; b–d, liver; e, heart. Arrows indicate the autophagic vacuoles. f, g, k, l, Electron micrographs of wild-type (WT) and Atg5−/− (KO) reticulocytes (f, g) and erythrocytes (k, l). An isolation membrane (asterisk), autophagosomes (arrows) and autolysosomes (arrowheads) are shown. Inset, engulfed mitochondria. h–j, m–o, The numbers of autophagic vacuoles (h, m) and autophagic vacuoles containing mitochondria (i, n) and persisting mitochondria (j, o) in reticulocytes (h–j) and erythrocytes (m–o). Error bars indicate s.d. (*P < 0.05; n = 55 cells).
This was confirmed when residual mitochondria were examined by MitoTracker Green in Ter119+ erythroid cells (Supplementary Fig. 21a), which is consistent with previous findings24. Similar results were observed when different mice were analysed (Supplementary Fig. 21b). Furthermore, Ter119+ CD71+ and Ter119+ CD71− erythroid cell populations were similar in WT and Atg5−/− mice, indicating that terminal differentiation proceeded equally (Supplementary Fig. 21c). Mitochondrial clearance from erythroid cells may be due to Atg5-independent alternative macroautophagy. This is consistent with observations that a lack of Ulk1 and the addition of 3-methyladenine results in disturbance in autophagic clearance of mitochondria22,24. Taken together, these results show that Ulk1-mediated alternative macroautophagy may function in the terminal differentiation of erythrocytes.

Our findings indicate that macroautophagy is more complex than previously realized. Conventional macroautophagy is crucial for basal and starvation-induced autophagy in vitro45, and is required for neuronal protein aggregate clearance25,26 and overcoming early neonatal starvation in vivo46. In contrast, we showed that alternative macroautophagy can be triggered by cellular stress in vitro and that it functions in the autophagic elimination of organelles during erythrocyte differentiation in vivo. Although both processes lead to the bulk degradation of cellular proteins, they may be activated by different stimuli in different cell types and may have different physiological functions. To understand macroautophagy better, it is important to classify autophagy-related molecules according to the type of macroautophagy in which they are involved.

METHODS SUMMARY

DNA transfection. MEFs were transfected with plasmid DNAs or short interfering RNAs (siRNAs) with the Amaxa electroporation system27. In some experiments, plasmids were introduced into MEFs by retroviral infections by using Plat-E cells.

Induction of autophagy. MEFs were treated with 10 μM etoposide for 18 h or starved for 6 h, unless otherwise indicated.

Electron microscopy. Cells and tissues were fixed by a conventional method or by a quick-freeze substitution method. Fixed samples were embedded in Epon 812, and thin sections were then cut and stained with uranyl acetate and lead citrate for observation under a Jeol-1010 electron microscope (Jeol) at 80 kV. The area of every autophagic vacuole and the total cytoplasmic area were calculated on the photographs by using a planimeter. For each cell, the autophagic area was calculated by expressing the total area of autophagic vacuoles as a percentage of the cytoplasmic area. In experiments combining fluorescence microscopy and electron microscopy, cells were cultured on coverslips with grids and fixed with paraformaldehyde and glutaraldehyde. In the Lamp2 experiment, cells were then immunostained with anti-Lamp2 monoclonal antibody. Subsequently, some sections were viewed under a confocal fluorescence microscope; the cells were fixed with OsO4 and examined by electron microscopy. In the GFP-LC3 experiment, after GFP-LC3 fluorescence had been viewed, the same cells were fixed with OsO4 and examined by electron microscopy.

Long-lived protein degradation assay. MEFs were starved or treated with etoposide with zVAD-fmk (100 μM), and the degradation of long-lived proteins was measured by a standard method28. The extent of protein degradation was calculated as the percentage of protein degradation in stress-induced cells minus the percentage of protein degradation in healthy cells.

Immunofluorescence analysis. Cells were fixed in 4% formaldehyde, permeabilized in 0.1% Triton X-100 and stained with anti-Lamp2 monoclonal antibody, followed by a FITC-conjugated secondary antibody.

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.
METHODS

Antibodies and chemicals. Anti-Ulk1 (A7481) polyclonal antibodies were purchased from Sigma-Aldrich, and anti-Atg12 (6G7) monoclonal antibodies were purchased from BD Biosciences. Anti-Atg3 (5F10) monoclonal antibodies were obtained from Abcam. Lysozyme protease inhibitor cocktail (containing 1.5 mM E-64, 2 mM leupeptin and 1 mM pepstatin A) was purchased from Nacalai Tesque. Etoposide and bafilomycin A1 were from Sigma-Aldrich, and other chemicals were purchased from Nacalai Tesque.

Cell culture and DNA transfection. MEFs generated from WT and Atg5−/− embryos at embryonic day 13.5 were immortalized with SV40 T antigen. MEFs were grown in modified DMEM27. Cells (10⁶) were transfected with plasmid DNA using the Amaxa electroporation system (kit V, program U-20) in accordance with the manufacturer’s instructions. The transfection efficiency was more than 75%, as assessed by co-transfection with DNA for GFP. The siRNA sequences used were as follows: mouse Ulk1, 5′-GGGUUGGACAAGUGCUUAUA-3′; separate mouse Ulk1, 5′-GGAAAGCUCAGAUUUUAAU-3′; mouse Fip200, 5′-CCCAGAGAUUUUCAACCA-3′; mouse beclin 1, 5′-GGUUUG GAAAAGAUGCUUAUA-3′; separate mouse beclin 1, 5′-GCAAGGUCUUAUAU-3′; mouse Rab9, 5′-GCGAAGCUCUUAUAAGAUUATT-3′. We also used control siRNA (Dharmacon siGENOME Non-Targeting siRNA#1 D-001210-01-20; Thermo Scientific). Cells (10⁶) were transfected with 10 μg of siRNA with the use of the Amaza electroporation system.

The retroviral GFP fusion expression vectors pMSCV–GFP–MCS–Zeo and pMSCV–MCS–GFP–Zeo were constructed by replacing the HindIII–Clal fragment of pMSCV puro (Clontech) with the Zeocin resistance gene and subsequently cloning the enhanced GFP (EGFP) sequence into the BglII site and EcoRI site, respectively. cDNA corresponding to mouse Rab9a and its mutants, mouse syntaxin7 and mouse M6PR, was subsequently cloned into these vectors to generate pMSCV–GFP–Rab9a–Zeo, pMSCV–GFP–Syntaxin7–Zeo, pMSCV–M6PR–GFP–Zeo, pMSCV–GFP–Rab9a212N–Zeo and pMSCV–GFP–Rab9a266Q–Zeo. Each GFP fusion plasmid was introduced into the MEFS by retroviral infection with the use of Plat-E cells.

Quantitative RT–PCR and microarray analysis. Atg5−/− MEFS were incubated with or without 10 μM etoposide for 12 h, and microarray analysis and qRT–PCR were performed. For microarray analysis, total RNA was purified with TRIzol reagent (Invitrogen) and used for preparing cRNA by Message AmpII (Agilent Technologies) in accordance with the manufacturer’s instructions. Two biological replicates were performed for each set of experimental conditions. Data were analysed with Feature Extraction Software (v. 9.5.3.1) (Agilent). For qRT–PCR analysis, total RNA was purified on an RNeasy column (Qiagen) and used for synthesizing cDNA and PCR amplification were performed with the iScript One-step RT–PCR kit with SYBR Green (Bio-Rad). Quantitative determination was performed with the CFX96 real-time PCR system (Bio-Rad). All samples were normalized for Gapdh level.

Electron microscopy. Attached cells and tissues were fixed by a conventional method (1.5% paraformaldehyde and 3% glutaraldehyde in 0.1 M phosphate buffer, pH 7.3, followed by an aqueous solution of 1% OsO4) or by a quick-freeze substitution method (cells were frozen in liquid nitrogen and then fixed with 1% OsO4 in acetone at −80 °C). Fixed samples were embedded in Epon 812, and thin sections (70–80 nm) were then cut and stained with uranyl acetate and lead citrate for observation under a JEOl-1010 electron microscope (Joel) at 80 kV.

Fixed adherent cells were sectioned up to 3 μm from the base. The extent of macroautophagy was assessed on electron micrographs that contained both the nucleus and cytoplasm of individual cells. The area of every autophagic vacuole and total cytoplasmic area were calculated on the enlarged photographs with the use of a planimeter (Planix). For each cell, the autophagic area was calculated by expressing the total area of autophagic vacuoles as a percentage of the cytoplasmic area, and cells with an autophagic area of more than 6% were defined as autophagic cells (6% was the upper limit in healthy cells). Macroautophagy was quantified in each sample for at least 20 cells and was confirmed by two additional independent experiments.

In experiments combining fluorescence microscopy and electron microscopy, MEFS cultured on coverslips with grids were treated with 10 μM etoposide for 18 h and fixed with glutaraldehyde and paraformaldehyde. In the Lamp2 experiment, cells were immunostained with anti-Lamp2 monoclonal antibody. Subsequently, three or four sections were acquired under confocal fluorescence microscopy and the cells were treated with OsO4. Cells were identified by using the grid as a guide, and the same sections as those employed for fluorescence analysis were also examined by electron microscopy. In the GFP–LC3 experiment, after GFP–LC3 fluorescence had been viewed, the same cells were fixed with OsO4 and examined by electron microscopy.

The number of autophagic vacuoles and mitochondria in erythrocytes or reticulocytes was counted in cells that had a long axis of more than 4.5 μm.

Long-lived protein degradation assay. MEFS were starved or treated with etoposide with ZVAD-fmk (100 μM), and degradation of long-lived proteins was measured by a standard method28. In brief, cells were labelled for 20 h with a medium containing 0.2 μCi ml⁻¹ 1-¹⁴C]valine (GE Healthcare). After washing and incubation in a medium containing 10 mM unlabelled valine for 60 min, the medium was replaced with fresh medium and the incubation was continued for the indicated durations. The medium was then precipitated in 10% trichloroacetic acid (TCA), and TCA-soluble radioactivity was measured. Release of [¹⁴C]valine was calculated from the radioactivity in the TCA-soluble supernatant as a percentage of the total cell radioactivity. The extent of protein degradation was calculated by subtracting [¹⁴C]valine release by untreated cells from that by starved or etoposide-treated cells, as the percentage of protein degradation in stress-induced cells minus the percentage of protein degradation in healthy cells.

Staining of conventional macroautophagosomes. Cells stably expressing GFP–LC3 were treated with etoposide or subjected to starvation, and the fluorescence of attached cells was observed under an FV500 confocal fluorescence microscope (Olympus) after 18 h.

Immunofluorescence analysis. Cells grown in eight-well slide chambers were fixed in 4% formaldehyde, permeabilized in 0.1% Triton X-100 and stained with anti-Lamp2 monoclonal antibody, followed by a FITC-conjugated secondary antibody (Invitrogen). The coverslips were then mounted in mounting medium (Beckman Coulter) with propidium iodide and examined by fluorescence microscopy.

Statistical analysis. Statistical evaluation was performed with the non-paired t-test.